Smart nanocarriers for the drug delivery

Prof.ssa Maria A. Vandelli – University of Modena e Reggio Emilia – Consorzio TEFARCO Innova

One of the most stimulating challenge in the pharmaceutical sciences is represented by the delivery of drugs in the correct site, in a suitable dose and for a defined time. This challenge has been investigated by using both lipid and solid nanocarriers, such as nanoparticles (Np) and liposomes (L), with the aim of obtaining vectors able to improve the pharmacological activity of drugs against cerebral disease and for the delivery of genetic material. As an example, specific drugs used in the therapy of cerebral diseases find a great difficulty in developing their activities and a field of research is directed to the use of Np as drug carriers for the CNS drug delivery with in vivo proofs of their efficacy. An application of the use of lipid nanocarriers consists in offering drug protection and facilitating internalization of genetic materials; new lipid systems were demonstrated to be able to transfec efficaciously different cell lines. Particularly, novel L formulations have demonstrated a good in vitro/in vivo stability and improved efficacy and safety of the therapeutic systems.

1. Description of the product

As an example of nanotechnology applied to the drug delivery to the CNS it is important to know that at present, only invasive methods such as intracranial injections, or the use of prodrugs are available for drugs unable to cross the BBB. This research has developed Np obtained starting from a polymer, poly(D,L-lactide-co-glycolide), approved by FDA. This polymer has been modified with short peptidic sequences and the new polymeric materials obtained are able to form Np that cross the BBB, to disguise the membrane limiting characteristics of the drug molecules and to be used in different pathologies of the CNS. Considering the “gene trouble”; the most important problem is the realization of efficient carrier systems able to protect gene material and to ensure cell internalisation.

2. Innovative aspect of the product

For the preparation of polymeric Np, a new aspect of the product is the punctual chemical modification of the polymer with specific molecules, chosen with the aim of the obtainment of a carrier for CNS. PLGA conjugation with BBB specific ligands were obtained in a simple synthetic method, allowing a possibility for industrial scale up, obtaining Np with modified surface characteristics, able also to bypass hepatic uptake and target CNS district crossing BBB. For the preparation of L, neutral and cationic lipids, and some derivatives from bile acids with stabilizer and cytoprotective characteristics, were used. In particular, cationic Ls, created by the addition of UDCA (with a decreased associated toxicity) have demonstrated to be
good carriers for oligonucleotide in HaCaT (keratinocytes cell line) cells. Recently, we obtained a new stable cationic pegylated anti-CD138 liposomes (ILp) with good physicochemical properties potentially able to efficiently encapsulate and deliver a model oligo against an aggressive B-cell non Hodgkin lymphoma, a Primary Effusion Lymphoma (PEL). In this case, the innovative aspects in the development of ILp are the optimization of both the encapsulation and the surface modification, to improve the efficacy on drug targeting.

3. Main advantages of the offer
If considering the Np, modified PLGA can be considered as a starting material, biodegradable, biocompatible, a-toxic and a-carcinogenic polymer, approved from FDA; the material allow a large scale production. The industrial and clinical applications of these new materials will improve the existing therapies, so the industrial interest of this product is destined to sanitary industries, above all in pharmaceutical research areas and it should be sustained by the necessity to improve and increase the existent therapies. Taking into consideration the L, the industrial sphere is the bio technologic-sanitary one which would like to develop innovative pharmaceutical formulations for gene therapy.

4. Technology key words
Nanoparticles, Liposome, Monoclonal Antibody, Brain Targeting, Gene Therapy.

5. Current Stage of Development
Work in progress – Laboratory tested (in vivo (rat) and in vitro assays): fluorescent assays; pharmacological assays.

6. Intellectual Property Rights
The product of the research is covered by patent.

Technical and scientific publications


CONTACT
info@biopharmanet.eu
Tel.: +39 0521 905073 Fax: +39 0521 905006