Highly respirable insulin microparticles for pulmonary administration

Prof. Paolo Colombo – University of Parma – Consorzio TEFARCO Innova

The University of Parma has developed a novel micronized powder of insulin to be delivered to the lung by inhalation for the diurnal treatment of diabetes. Inhaled insulin could be a viable alternative to post-prandial insulin administration for patients with diabetes because of its more favourable pharmacokinetic profile and less invasive route of administration. Dry powder inhaler (DPI) systems, which doesn’t contain non-environmental friendly CFC or HFA propellants, were explored for the delivery of insulin to the alveolar region. These insulin pulmonary particles are characterized by a very high respirability due to a peculiar structure and shape and quick dissolution in aqueous solutions. The University is looking for industrial partnership for product development.

1. Description of the product

Drug delivery strategies for diabetes have included a wide range of scientific and engineering approaches, including molecular design, formulation and device design. Particle engineering has been applied to pulmonary formulations for delivery to the deep lung. The creation of novel drug delivery methods for the treatment of diabetes should remove barriers to insulin therapy and increase patient acceptance and compliance. The substitution of routine injections with insulin for inhalation may offer an increasingly attractive alternative. To date several technologies have been used to produce highly breathable insulin powder with an irregular geometry, to allow the transport “in air suspension”.

Insulin raw material

Insulin spray-dried

The dry powder inhaler device used during the product development.
In addition, inhalatory powders must be flowable, in order to be regularly dosed in the inhalation device. The product here described is insulin’s micro-particles aerodynamically useful for a deep pulmonary deposition and easy to dose inside the insufflation device. New way of preparation has been identified, finding the one able to give a breathable and bio-available powder mixture. The most relevant feature of this product is its good stability at room temperature.

2. Innovative aspect of the product
Insulin dry powders are manufactured by spray drying an aqueous acetic insulin solution, with a pH of lower than isoelectric point of the hormone. The volatilization of the acid during the production process leaded to an increased pH value of the powders compared to the pH of the medium prior spray drying to make particles more stable, manageable and high respirable. Particles obtained have corrugated surface characteristics. They have good flow properties which permit them to be easily charged in a device for insufflation. Very surprising is the fact that these powders, when aerosolized, produce aerosol with breathable fractions of 80-90%, higher than the ones commonly used in medical aerosols (20-40%). However, the major advantage is the room temperature stability that allows the product to be stored in non-refrigerated conditions for short periods of time.

3. Main advantages of the offer
By this formulative approach insulin crystals are transformed in micro-particles constituted essentially of pure peptide. The product does not contain excipients, so reducing the potential side effects associated to them. This insulin powder can be used as a generic version of the recently marketed pulmonary insulin, adding the improvement not to have excipients in the inspired particles.

4. Technology key words
Insulin Microparticles, Dry Powder Inhaler, Pulmonary Administration

5. Current Stage of Development
Work in progress – Tested in laboratory- Scale up needed

6. Intellectual Property Rights
The product is covered by a patent EP 1734938B1

Technical and scientific publications


CONTACT
Consorzio TEFARCO Innova
c/o Dip.to di Farmacia, Viale delle Scienze 27/A, 43124 Parma - Italy
tefarco@nemo.unipr.it - Tel. 0521.905073 Fax. 0521.905006